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In this paper the two-point boundary value problem is trans-
formed into general first-order ordinary differential equation system
through introduction of conditions of an integral character to supple-
ment the simultaneous set of first-order equations. A new discrete
approximation of a high-order compact difference scheme is pre-
sented for the first-order system. It is a block-bidiagonal profile
and removes the limits of other high-order discrete schemes at
the interval ends. The numerical tests of a seventh-order compact
difference scheme show that the proposed scheme is very conve-
nient and efficient for linear and nenlinear two-point boundary vatue
problems. @ 1995 Academic Press, Inc. :

1. INTRODUCTION

Until now, one can use many numerical methods to solve
two-point boundary value problems. Generally speaking, these
may be divided into initial value and boundary value methods.
The initial value methods have some advantages: step sizes are
adjusted flexibly, errors are controlled at each lime step, little
storage is needed, and so on. But they have a critical defect:
it is difficult or impossible for some two-point boundary value
problems to be solved with these methods. The reason is that
even for very well-conditioned boundary value problems the
corresponding initial value problems can be very ill-condi-
tioned. In addition, using initial value metheds in boundary
value problems needs iteration procedures, so more computing
time is spent. Although boundary value methods do not have
some advantages of initial value methods, they can overcome
the shortcomings of initial value methods and can be suited for
different kinds of problems.

In the domains of plasma physics, hydrodynamics, and aero-
dynamics, two-point boundary value problems that are solved
with difficulty by common numerical methods often appear,
tor instance, the singular perturbation case, the acute oscillatory
case, the severe exponential case, and the intrinsic instability
case. Employing the common initial value or low-order bound-
ary methods will give inaccurate numerical results. Of course,
one expects that there exist widely applicable and very efficient
numerical methods to solve this kind of boundary problem.
Usualty there are two ways: adopting non-uniform meshes and
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using high-order discrete approximation schemes. Because the
selection of non-uniform meshes is relative to concrete prob-
lems [5, 6], this way has no generalization. Quartapelle and
Rebay [1] employed linear multipoint schemes to approximate
the first-order equation system that is transformed from the
two-~point boundary value problem. They got fourth-order and
sixth-order (actually fourth-order overall) bordered quadridia-
gonal schemes, To improve the accuracy of numerical solutions,
they used Wilkinson’s iterative refinement procedure. The high-
est overall accuracy of their approximation scheme is only
fourth order because the scheme has limits of the accuracy at
interval ends. The author presents a new method with which
arbitrary order block-bidiagonal compact scheme can be con-
structed. The proposed scheme has no limits or the accuracy
order of approximation scheme at the interval ends and can
easily deal with all kinds of boundary conditions as well. In
this paper, a seventh-order compact difference scheme is con-
structed and Newton—Cotes integration formula (r = 6) is used
for conditions of integral character. Comparing the numerical
results of the seventh-order scheme with the linear multipoint
schemes in Ref, [1], we discover that the numerical results of
the seventh-order scheme are very accurate.

The content of this paper is organized as follows. Section 2
describes the transformation of a two-point boundary value
problem into a system of the first-order equations and the treat-
ment of boundary conditions. In Section 3, a seventh-order
bidiagenal compact difference scheme is constructed. Details
are omitted. The computing process of the scheme is given in
Appendix A with mid-variables to help readers edit the program
conveniently. Section 4 shows some numerical results of the
seventh-order scheme and linear multipoint schemes. Section
5 gives conclusions about the proposed scheme.

2. SYSTEM OF THE FIRST-ORDER TWO-POINT
BOUNDARY VALUE PROBLEM AND
INTEGRAL CONDITIONS

The first-order linear system of a two-point boundary value
problem is

Y =AY + R{x), x€[a,b], (2.1}
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BY() +B,Y(® =D, (2.2)

where A, B, and B, are m X m matrixes; Y, R, and D are
m-vectors.

It is well known that arbitrary order linear ordinary differen-
tial equations can be transformed into the first-order system
(2.1). So numerical methods based on the system (2.]) are of
universal adaptation. The formula of integral conditions is

j " B()Y(x) dx = D, (2.3)

where @(x) is a known function matrix, which is decided by
the Green identity and conditions of the original two-point
boundary value problem. Setting ®(x) = dix — a)B, +
é(x — b)B,, where 8(x) is the delta function, formula (2.3)
is equivalent to formuta (2.2). Boundary condition (2.2) is
a particular case of the integral condition (2.3). To compute
condition {2.3), the general formula is

B]Y(x]) + BzY(.xZ) +oeee BNY(XN) = D, (24)

where B; B,, ..., By are m X m matrixes, D is a m-vector, x,,
X3, ..., Xy are grids. Formula (2.4) is provided by a numerical
integration formula.

One considers a fourth-order equation

¥ Y + gy + w(x)y' + o)y =f(x), x € [a, b],
(2.5)

supplemented with the boundary conditions

W)y =a, yO)=B, y@=ao, yB =4, 26
where p(x), g(x), u(x), v(x), and f(x) are known functions and
o, B, ', @', are constants,

Superscript (4) denotes the fourth derivative. Letting y; =

¥s5. ¥1 = ¥, and y; = y(, one can get

¥
v=|"1

¥3

[ Y4

[ —p(x) —g(x) —u(x) —vlx)
1 0 0 0 &

A(xy = 0 ) 0 o | 2.7

0 0 1 0
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fx)

R(x) =

¥4 has boundary condition y.(a) = « or y(b) = B8 and v, has
boundary condition y;(a) = a' or y(b) = B'. The integral
condition of y; is

ijzdx=,8’ _— (2.8)

In the Green identity
4 i Ui it L M
[+ ¢y de =yt - ¢y + gyl 29)

the function ¢(x) is required to satisfy d(a) = $(h) = 0 because
of the unknowns vi(a) and ¥{(h). Setting ¢(x) = (x — a}(x —
b), formula (2.9) equals

fb x—a)x — by dx = fﬁ (x —a)x — by dx
a a (2.10)
= —alo' +8)+ 2B — w),

which is the integral condition of y,.
Provided that formulae (2.8) and (2.10) have general expres-
sions of numerical integration, respectively,

d vyt doyaxy) + o F oy =8 —af, (2.11)

e yi(x) T ey () + -+ enyi(xy)

=bB-—aie +8Y+2(8— o), (2.12)

the general boundary condition can be

e 0 0 0
d 0 0
B = ,
0 0 0
_0 0 0 1]
—(:'2 0 0 07
0 d> 0 0
Bg = s s
0 0
-eN,I 0 0 0
0 dy_ 0 0
BN—l - 0 0 s
| 0 0
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ey 0 0 0
dy 0 ¢
By = 1ol
5 0 0 0
[ — aXa' + 8y + 2B — )
B —a
D= B
[8'4

It is very convenient that the method to transform boundary
conditions into general form (2.3) or (2.4) is used for separate,
non-separate, and periodic conditions.

3. SEVENTH-ORDER COMPACT DIFFERENCE SCHEME

The idea of obtaining a high-order compact difference
scheme is like this: First, transform a two-point boundary
value problem into a general first-order equation system; then
construct algebraic equations by means of the Taylor expan-
sions of variables and their first-order derivatives as well as
subjecting them to the first-order equation system at integral
and fractional grids in each subinterval. Finally get a high-
order block-bidiagonal compact difference scheme through
some algebraic elimination processes with a computer. In this
section, a seventh-order compact scheme is given with concrete
procedures. Considering the discrete approximation of Eq. (2.1)
in subinterval [x;, x;1,], the subinterval is divided equally into
six smaller subintervals as

1 t 1 t 15 1y Iy
| 1 | ] ] ] | !
X it
where 1, t, ..., t; are notations of grids in the subinterval

[xi, x41]. Corresponding values of the variable and its derivative
are marked as Y, Y,, ..., Y7, Y{, Y1, ..., Y;7. Taylor expansions
of Y, Y:, Y3, ¥; Y, and Y; at the fractional grid #, can give
six algebraic equations. Six unknown variables Y}, Y7, Y,
YY), YP, and YY can be solved by a few algebraic opera-
tions, namely,

hnH . 7 ’
TR 2 @Y, + ahYi+ olh'YD), 3.1

where h = (x, — x}/6, n = 1,2, ..., 6; the coefficients af are
shown in Appendix A.

Combining Taylor expansions of Y{, Y}, Y3, Y5, Y., Y7 at
grid ¢, with formulae (3.1) can give
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V=2 DB WY oY), k=1,23,567. (3.2
i=1

The coefficients bf in formulae (3.2) are given in Appendix A.
Variable Y and its derivative Y’ at grids 1, t1. ..., f; subject
to equations

Y =AY, +R, j=12..7 (3.3
where A, and R, are values of A and R at grids f;.

Substituting (3.3) into (3.2) can obtain six linear algebraic
equations with respect to seven unknown variables, Y, Y, Y3,
Y., Y;5, Y, and Y. A formula of Y, and Y, can be gotten by
eliminating Y,, Y3, Y,, Y5, and Y, from the six equations,
namely,

J3—15,.3{,. + %T,—Y,- =F +o’Y®), i=1,2,..N—1, (3.4

where 8; and T, are m X m matrixes, F; is a m-vector, given by
computer. Formula {3.4) is a seventh-order compact difference
scheme of Eq. (2.1) in the ith subinterval. The structure of the
seventh-order scheme is profiled here as the following block-
bordered bidiagonal matrix:

S| T} Fl
SZ TZ Fz

Sy T Fy
B, B By, By D

Explicit procedures for §;, T, and F; are given in Appendix
A. Adoption of selecting the row pivot in solving inverse ma-
trixes and linear algebraic equations can aveid augmenting
errors step by step. So the Wilkinson’s refinement procedure
is not needed. To match with the truncated errors of scheme
(3.4), Newton—Cotes (r = 6) numerical integration formula,

LS %(41}1 + 2166 + 27f + 2726 + 27f, + 216f,
At
+aify - =18 a<g<n, (3.5)

is used in dealing with integral conditions, Therefore the num-
ber of grids should be N = 6K + 1; here K is an integral number.

4. NUMERICAL EXAMPLES AND COMPARISONS

In this section, several typical kinds of two-point boundary
value problems are solved by the seventh-order compact differ-
ence scheme, whose solutions are found with difficulty by
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TABLE I TABLE III
Method N L? error L™ error Conver. order Method N 1? error L* error Conver. order
200 G151 1) 0.22(+1) 200 0221(—2) 0.557(—2)

Fourth-arder 400 1.563(—1) 0.85(—1) 4.75 Fourth-order 400 0.123(—%) 0.291(—-3) 417
multipoint 800 0.337(—2) G51{—2) 4.06 multipoint scheme 800  0.744(—5) 0.170(—4) 4.05
scheme 1600 0.209(—3) (.32(—3) 4.1 1600 0.461(—6) 0.130{—5} 4.01

3200 0.130(~4) 0.20(—1) 4.00
Seventh-order 103 0.320(—4) 0301 (-3

Seventh-order 103 0.289(—1) 0410(—1) compact scheme 199 0.456(—6) 0.501(—4) 6.41
compact 199 0.148(—4) 0.209(—4) 11.42 397 0.202{—8) 0.253(-7) 7.82
scheme 397 0.426(—7) 0.602(—=7) 8.44 790 074K —11)  0.996(—10) 7.99

799 G 149(—9 Q21 (-9 8.07

* common numerical methods. The numerical results are com-
pared with the multipoint schemes of Ref. [1].

4.1. Oscillatory Case
Considering the problem [1, 4]

¥+ @’y = Sycos(yx), w0)=1,3(1)=0,

the solution is
¥(x) = C, cos(wx) + Gy sinfwx) + 5 cos(yx)/ (w? — ),

where C; = | — §)/{w* — ), C; = —[C, cos(w) + 8, cos(y)/
{w® — yH] sin(w). Setting w* = 10', y = 80, and §, = 107,
errors of the numerical solution and results of reference [1] are
shown in Table 1.

Setting ¥ = 1600, errors of the numerical solution for several
values of @’ are reported in Table IL

4.2, Exponential Case

An exponential example is the problem [1, 4]
¥~ oly = Speos(yx), y0y=1,¥1)=0,

whose solution is

TABLE 1T

Seventh-order
compact scheme

Sixth-order
multipoint scheme

w’ L error L= error I? error L* error
10° 0.22(—-11) 0.62(—11) 0.282(—12) 0.555(—-12)
1 0.39(—9 0.56(—9) 0.387(—12) 0.816(—12)
10* 0.21(—6) 0.33(-6) 0451{—~11) 0.673(—11)
1 0.18(-3) 0.38(—-3) 0.190(—8) 0.269(—38)

¥(x) = C explowx) + C; exp(—wx) — (@ + ¥9)71§, cos(yx),
where C; = (1 — e™)7! e 9[(w® + V) 'Sylcos(y) — 7],
Cy= (1= ey 1 + (? + 781 — e cos(y)].

Selecting o = 10",y = 80, and S, = 10%, errors of the numerical
solution for the two schemes are given in Table 1L

4.3. Dichotomous Instability Case

One can take the problem [1]

V- wly = @l cos’ (mx)y + 277 cos(2ax), () =0,v(1) =0,

for example. The analytic solution is
yx)y = (1 + e} [exp{—wx) + explw(x — 1))] — cos’(wx).

Giving w = 20, errors of the numerical solution for the two
schemes are reported in Table IV.

Errors of the numerical solution with w = 10? are given in
Table V by the seventh-order compact scheme.

4.4. Turning Point Case

A singular perturbation example with a turning point is the
problem [1, 4]

TABLE 1V
Method N L? error L™ error Conver. order

Fourth-order 100 0.17(—4) 0.38(—4)
multipoint 200 0.67(—6} Q.18(—5) 4.67
scheme {with two 400 0.31(-T) 0.89(—7) 4.45
Wilkinson 800  0.17%-8) 047(—8) 4,18
refinement) 1600 0.10(— 0.27(—9) 4,08
3200 08411 015-10) 4.01

Seventh-order 7 078=5  0.15(—4)
compact scheme 13 0.45(—=7) 0.11(—6) 7.44
25 0.19(—9) 0.44(—9) 7.89
97 03%—-14)  093(—14) 7.79
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TABLE ¥V TABLE VII
N L error L” error Conver. order Method N L’ error L” error Iterations
13 0.995(—3) 0.254(-2) Fourth-order 50 0.55(=7) 0.15(—6) 4
25 0.169(—4) 0.599(—4) 5.88 multipoint 100 041(—8) 0.12(=7» 4
103 0.312(-9) 0.167(—8) 7.53 scheme 200 0.30(—9 0.80{—9} 4
199 0.154(—11) 0.804(—11) 8.01 400 0.28(— 1) 0.60{—10) 4
403 A.629(—14) 0.349(—13) 177
Seventh-order 7 0.26(—13) 0.36(-13) 4
compact scheme 13 0.15(—15) 0.34(—13) 4
ey + xy' = —em? cos(mx) — mx sin(7x),
y=1)=~2,5(1)=0,
. 8C.
whose solution is y(x) = 1In - = -1, Ct =4 —§+ 2 12(2 — 5)
Cox + 87
erf(x/V2g)

¥(x) = cos(mx) +

erf(1/V2e)

Errors of the numerical solution with & = 107 are given in
Table VL

Making use of stretched interval transformation can obtain
a better numerical solution for boundary layer problems [3].

4.5. Nonlinear Equation with an End Singularity

A nonlinear example with an end singularity is the problem
i1, or 2, P36}

VA Ix+ 8 =0, 0<8=2y(0)=0,y1)=0.

The solution is

Using I’'Hopital’s rule deals with the end singularity, i.e.,
2y + de’ =0 atx=1.

Starting from the initial guess y(x) = () and taking § = 1, the
Newton method converges to the solution characterized by the
root C_. Errors of the numerical solution for the two schemes
are shown in Table VII.

5. CONCLUSION

Through the numerical comparisons between the proposed
scheme and the linear multipoint scheme, it is obvious that the
seventh-order compact scheme s very powerful for two-point
boundary value problems. The numerical errors of the proposed
scheme are much smaller than ones of the linear multipoint

TABLE VI . . .
schemes for the same number of grids (see the tables in Section
Wilkinson 4}, The deficiency of the proposed scheme is that expressions
Method N L? error L* error iterations  of the scheme are not apparent. One must edit the subroutine to
obtain the scheme. Although constructing the scheme consumes
Fourth-order 600 0.214—1) 0.282(—1) 2 . . . .
multipoint scheme 800 0.117(—1) 0.158(—1) ) more computer time than constructing a linear multipoint
1000 0392(—2)  0.528(-2) 3 scheme, a small number of discrete grids are needed under a
1200 0.152(-2)  0272(—2) 6 given tolerance error because of the high accuracy of the pro-
posed scheme. In addition, the scheme is bidiagonal. Thus it
Seventh-order 0L 0.393=2)  0558(—2) takes less computer time to solve algebraic equations of the
compact scheme 601 0.944(—6) 0.134(—5} . . .
201 0113(=12)  0.838(—12) proposed scheme than to solve algebraic equations of a linear
multipoint scheme at the same grids.
APPENDIX A
The ceefficients a of formulas (3.1) are
al = ab = & d=a=3  a=d=] =3 d=0
d=-d-z d=-d-=3 d=-d-2. d=0  ag-=:2
d=ad=g  d-a=l  ad=-ad=2  a=-i &=
al = —al = &, @ = —ag=3,  diT —ai=1 a; = Q, a =%
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I = a4 = | 3 — 43— -l 3
4 =@ = 5, a = ay = =, a3
6 — _ 6 — -1 6 — — 6 — L 6
ai 1T T a; s = as

The coefficients & of formulas (3.2) are

b}
b
bi
b
b
b]

—6a
—4a) + 12a] — 32a] + 80a! — 192a] + 44845 + sgn(j
—2a; + 3af — 44} + 54} — 6a; + Ta® + sgn(j — 8),
20} + 3a} + 4a} + Sa} + 6a} 740 + sgn(j — 8),

]

where j = 1, 2, ..., 8; function sgn(x) is defined as

1,

sgn(x) = {0

PENG

= 45 =1 53— -1 5 — )
_a5_4_87 azfg, ag—O,
— _ah = -1 [ G — -1
= s = b 614 - O, dg — =

+ 27a; — 108a] + 405a) — 1458a) + 5103} + sgn(j — 8),

— 8,

daj + 124} + 324} + 804! + 1924 + 448a¢ + sgn(j — 8),
6al + 27a} + 108a} + 4054} + 14584] + 51034 + sgn(j — 8),

x=0

x<0

Defining W,, W, ... Wy; as m X m matrixes, Gy, G., ..., G\ as m-vectors, I as a m X m unit matrix, the computing procedure
is executed in the following way:

) = biby — bibl,

cy = (bib} — blbhl¢,

cs = (blby — bibc,

1 = by + bicy + bi;

W, = [(bibt — bIBDI — hbIA )/ e,

G, = [bIR, — biR; + (bibi —BDHR)/ ¢y
Ws = [(6ibi — bibDI — hbiA )V ey,

G: = [BiR, — BIR, + (bIbk — BibDRY))/cy
W, =B + BSW, + bIW;,
Wi = (Bie, + bley + B — hAg,
W, = b + BIW, + W,
Wi, =B + bW, + BIW, + hbiA,,

G, =R, — béRa - BiG, — HGy;
Wi = b1 + BIW, + (b — hA5)W,
Wi = (B + bic)l + ¢, (B3l — hAs),

G; =R; — hiR: — BiG, — (bl — hA))G:;
W, =BT + (B — hA)W, + bW,
Wi = (biey + 5L + co(bil — hAy),
Gs=R; — béR-a - (b%l — BAYG, — bngé
Wy = Wi/ (ce W — W, Wo),
Wy = Wayl(csWi; — W W),
Wy = —(W ;W5 + Wy)/c,
Wy = —(W; ;W + Wo)/c,
Wy = W5 + WisWo + W)W,
Wi =W, + WigW,, + W W,
Wi = Wy + Wy Wo + W, W)y,
Wi = Wy, + Wi Wy, + W, W,

¢ = (beby — bibdic,,
¢y = (Biby — bibdc,,
co = By + Bles + B,
W, = [(bibs — bibDI — hbiAj)/c,,
W, = [(bibi — bibDI + h(biby ~ bPDAN /¢,
W, = [(blb: — b)) 1 + hbiA)/e,,
W, = [{(bibs — bYbDT + Wbkl — bIbDA))/ ¢,
W, = b + BSW, + hiW,,
W, = BI + bW, + bW, + hbtA,,
G;=R; — b§R4 - bgGl - bngi
W,, = bl + bW, + bW,
W, = (bgﬁ + bics + Bl — hA,,
Wi = B + BIW, + (Bl — hA W,
Wy, = B+ bW, + (b1 — hA W, + hbiA,,
Wi = (b1 + bic))T + oo(Bl — hAY),
Wy = B + (Bl — hA))W, + bW,
Wy, = il + (Bl — hA)W, + BIW, + hbiA,,
W, = (bgcﬁ + b%)l + ¢35 (B3 — hAs),
Wiy = WL W, — o0,
Wy = Wil(es W, — W, Wy),
G; = Wil(cG, — WGy,
Wy = — (W Wy + Wylle,
Gy = (WG, + Gi)eg:
Wi =W, + W, Wy + W)Wy,
Gy = G; + WGy + WGy
Wi = Wy + W Wy, + W, W,
G = Gy + WGy + WGy
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S = W, Wi 'W,, — Wy, T, = W,,W/W,;, — Wy, F = W37W3741G9 — Gy,

Although writing directly the expressions of §;, T;, and F; is tedious, it is convenient to do this task with a computer.
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